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We recognize some universal features of macroscopic dynamics describing the approach of a well-
established level of descriptigthat is, successfully tested by experimental observatitnsquilibrium. The
universal features are collected in a general equation for the nonequilibrium reversible-irreversible coupling
(abbreviated as GENER)CIn this paper we formulate a GENERIC, derive properties of its solutions, and
discuss their physical interpretation. The relation of the GENERIC with thermodynamics is most clearly
displayed in a formulation that uses contact structures. The GENERIC is also discussed in the presence of
noise. In applications we either search for new governing equations expressing our insight into a particular
complex fluid or take well-established governing equations and cast them into the form of a GENERIC. In the
former case we obtain the governing equations as particular realizations of the GENERIC structure; in the
latter case we justify the universality of the GENERIC and derive some properties of solutions. Both types of
applications are discussed mainly in the following papghys. Rev. E 56, 6633 (1997)].
[S1063-651%97)06512-4

PACS numbegps): 05.70.Ln, 05.60tw, 51.10+y

I. INTRODUCTION experimental observationhe most fundamental observa-
tion is the approach to equilibrium; all time-evolution equa-
Our principal motivation for developing a general formal- tions for complex fluids should be formulated such that the
ism for the dynamics of nonequilibrium systems comes fromstructure of the equations guarantees that global equilibrium
the modeling of rheological properties of complex fluids. Weis approached.
recall that the modeling of flow properties of simple fluids, In order to explain the idea of using more general obser-
such as water, is based @n an unambiguous choice of the vations for formulating the GENERIC structure we introduce
state variablesthe hydrodynamic fieldsand(ii) the require- the notion of alevel of descriptionWe say that one level
ment of the conservation of the total mass, momentum, an@evel 1) is more microscopicor less macroscopi¢han an-
energy. The requiremertti) provides a general framework other level(level 2 if the quantities used to describe the
for the governing equations: They have the form of localstates, called state variables, on level 1 depict more details
conservation laws. In the modeling of complex fluids there ighan the state variables used on level 2. For example, the
no unambiguous or universal choice of state variables andevel of fundamental particles is more microscopic than the
consequently, a general framework for the time-evolutiorlevel of hydrodynamics. The most macroscopic level is the
equations cannot simply be based on conservation laws. Wevel of equilibrium thermodynamics, on which states are
here suggest replacing the requirem@ntby a general equa- described by two real numbers, and no time evolution takes
tion for the nonequilibrium reversible-irreversible coupling, place. If level 2 is successfully tested by experimental obser-
which we abbreviate as GENERIC. The reason Wilnhas  vations, then the GENERIC structure of the time-evolution
to be abandoned in the context of complex fluids is that theequations on a more microscopic level 1 must be formulated
time evolution of the internal structure of complex fluids such that level 1 and level 2 amompatible(that is, the
(e.g., the structure of the macromolecules composing thenmexperimental observations are reproducible and in agreement
cannot be separated from the time evolution of the hydrodywith predictions based on the corresponding dynamical theo-
namic fields. The experience collected in rheological modelries). In this and the following papdi], referred to as paper
ing strongly indicates that there i preferred universal set 1l, we shall always take the more macroscopic level 2 to be
of state variablesfor characterizing the internal structure. the level of equilibrium thermodynamics. The development
Their choice depends on the nature of the fluid. Conseef a GENERIC in the context of the compatibility with more
quently, if we want to say something about rheological mod-microscopic levels of description will be studied elsewhere.
eling without specifying the fluid under consideration, weIn paper Il we work out many particular examples. In the
have to remain uncommitted to the choice of state variablesontext of specific examples with specific choices of state
This in turn implies that the language and ideas to be used igariables, the abstract ideas developed here for unspecified
formulating a GENERIC have to remain somewhat abstractstate variables are clarified in a simpler and more familiar
How can one expect to formulate the general structure olanguage(see paper )| The advantage of the abstract lan-
the time-evolution equations for an unspecified set of statguage of this paper is that many general results can be de-
variables? Our formulation of the GENERIC is guided byrived very efficiently: once for all applications.
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If we have the choice of modeling experimental observa- The paper is organized as follows. A general formulation
tions on a more microscopic or more macroscopic level, thef the structure of the time-evolution equation expressing its
advantage of adopting the more macroscopic level 2 is theompatibility with equilibrium thermodynamics is presented
relative simplicity of the governing equations and thein Sec. Il. In Sec. lll we look deeper into the relation be-
straightforward access to the macroscopic properties of odween the GENERIC and the structure of thermodynamics,
direct interest. The disadvantage of level 2 is that the quanand into its formulation in the presence of noise. lllustrative
tities through which the individual features of systems areexamples are worked out in paper II. This paper and paper I
expressed on level 2 can be obtained only from results off€ Written in such a way that they can be read in either
observations. The advantage of the more microscopic level §7d€"; depending on whether one prefers to be motivated by
is its more fundamental nature. We also depend on eXpergonsmermg the compatibility of two levels of description

mental observations to specify the quantities through whicl‘gthis papey or by discussing specific examples that include

the individual features are expressed on level 1, but thes%lassma! hydrodynamlcs, th_e nonlsot_hermal kinetic theory of
olymeric fluids, and chemical reactiofyzaper I).

experimental observations are more fundamental. They perﬁ’-
etrate into deeper knowledge of the physical nature of the
system under consideration. The disadvantage of level 1 is Il. COMPATIBILITY WITH EQUILIBRIUM
the complexity of the passage from the governing equations THERMODYNAMICS

to the macroscopic features of our direct interest. |5 this section we present a general formulation of the
Once we have accepted to use the approach to equilibriuy e of a time-evolution equation expressing its compat-

as a fundamental experimental fact, how can we actuallyyjjir with equilibrium thermodynamics. This GENERIC
develop the GENERIC structure guaranteeing a timegycryre is presented as an extension of the Ginzburg-

evolution compatible with equilibrium thermodynamics? | 5nqau equation. In Sec. IIA we recall the classical
How can we recognize the features of the governing equag;jn;pyrg-Landau equation and its shortcomings. In Sec. |1 B
tions that guarantee that their solutions are compatible withy o onsider the compatibility of a general time evolution
the approach to equilibrium? The GENERIC structure thajyii, equilibrium thermodynamics. In Sec. Il C we discuss

we present in this paper is a result of thealysis of many 4 example of Boltzmann’s kinetic equation.
particular examplesThis structure has emerged gradually

[2,3] from an attempt to recognize common features. It
should be pointed out that, with the exception of the Boltz-
mann equation, all the examples analyzed are for systems Let x denote an order parameter ad{x,T) the Helm-
near equilibrium that may be described in excellent approxiholtz free energy, wher& is the absolute temperature. At
mation by local equilibrium states on the next higher level ofequilibrium, the order parametgrassumes the valug, that
description. An extrapolation to more general situations is ofninimizes®, i.e., Xy, is a solution of
a hypothetical nature.

In general, the analysis of the compatibility of two levels @:O (1)
of description involves pattern recognition processn the X '
spirit of the dynamical system theory the first thing that we
shall do is to find the phase portrait on level 1, that is, the seBY o/ 6x we denote the derivative with respectxolf x is a
of all solutions for all initial conditions and a family of pa- function (for example, a density or concentration fietden
rameters through which the individual features are expressed ox denotes the Volterra functional derivative. Ginzburg
(e.g., Hamiltonians in the case of classical mechanig&e  and Landay4] have suggested that the time evolution that
then look at the phase portrait as a “painting” and try to carriesx to its equilibrium valuexy, is described by the equa-
recognize some pattern in it, typically neglecting the fasttion
contributions to the dynamics. In fact, we look for a pattern
that represents the phase portrait obtained on level 2. From d_X: _ @ @)
the extensively studied example of classical mechanics ver- dt oX’
sus equilibrium thermodynamics we know that the pattern
recognition may be achieved by some kind of coarse grainWhereM is a pOSitive-definite linear Operator. Note thaxkif
ing. From another example, namely, the Boltzmann kinetids @ function of position in addition to time, theax/dt
theory versus hydrodynamics, we know that the pattern recshould be read agx/dJt. Equation(2) is called a Ginzburg-
ognition consists of concentrating on a special part of thd-andau equation. We may regard it as a generic relaxation
phase portrait, the part that is in the vicinity of local equilib- €quation. It is important to point out that E@) has not been
rium solutions. Once the pattern has been extracted ar@erived. It is an equation that is JUSt|f|Ed SOler on the basis
found to be compatible with experimental observations, wedf comparing properties of its solutions with results of ob-
can try to identify the structural features of the time- Servations. The chosen observation is the approaghmk,
evolution equations on level 1 that lead to the pattern. It ifor large timest (for t—c).
important to stress that if we succeed in identifying the The proof that solutions to Eq42) describe the approach
GENERIC structure leading to a certain pattern we provide 40 Xy ast—o proceeds as follows. From Eq) we see
foundation of a specific realization of the GENERIC, not aimmediately that
foundation of a GENERIC in its abstract form. The
GENERIC structure presented here can only be the result of di’: _ @ M@ -
many different case studies. dt Sx ' ox |

A. Ginzburg-Landau equation

©)
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by virtue of the posi_tive definiteness bf, where(,) denotes  admissible statex is denoted byM (i.e., xe M). The set

the scalar product in the space of order parametets ® A is called the state space on level 1. The state variables of
reaches a minimum ad;, then® is convex in the neighbor-  gqujlibrium thermodynamics are(e), wheren denotes the
hood ofxy,. The convexity together with the inequali®)  number of particles per unit volume aeds the total energy
then implies thatb plays the role of the Lyapunov function per unit volume. We shall denote the state space of equilib-
corresponding to the approash-xy ast—«. As time in-  riym thermodynamics with the symbdl [i.e., (n,€) e NV].
creases, the trajectories are trapped in smaller and smaller ¢ formulate the general time-evolution equation for the

neighborhoodd) ={x|®(x) <cons} of x. unspecified state variableswe need the following structure
Now we can regarck as a state variable on a well- i the state space.
established level 1. For example,may stand for the one- 1 Bundle structureThe state spac#/ is represented as a

particle distribution functior(level 1 is then called the level pyngle with the state spad¥ of equilibrium thermodynam-
of one-particle kinetic theojyor x may represent the five .5 as its base space, that isv(=(M,NIT), where
hydrodynamic fields (see paper )l Inspired by the 11: A4— A/is the bundle projection.

Ginzburg-Landau equation, we look for a general time- o Potentials (E,S). The potential E: M—R has the
evolution equation, a GENERIC, that would describe the eXphysical meaning of the total energy and the potential
perimentally observed approa_ch to a more macroscopic leve: \ 1, R has the physical meaning of the total entropy.

2. In this paper, we follow Ginzburg and Landau and take 3 pgjsson (nondissipative or reversible) kinematiéa.

level 2 as the level of equilibrium thermodynamics. operatorL transforms the gradienSE/éx of the energyE
As in the case of the Ginzburg-Landau equation, we shallyiq 4 vectorl SE/ 8x.

regard the GENERIC as an equation justified by the fact that 4 Ginzburg-Landau (dissipative or irreversible) kinemat-

its solutions agree with the experimental observation of thg.g ap operatorM transforms the gradiendS/dx of the
approach to equilibrium. We naturally require that the We"'entropyS into a vectorM 6/ 8x.

established governing equations, such as the Boltzmann ki- The general equation describing the approachx db

netic equation or the Navier-Stokes-Fourier hydrodynamicyaies at which the behavior is well described by equilibrium
equations, will all be particular realizations of the thermodynamics is:

GENERIC. We can thus regard the development of the
GENERIC as a search for a common structure of well- dx SE 5S
established time-evolution equations. As in the case of the at b TM% (4)
Ginzburg-Landau equation, we would like to express the ap-
proach to equilibrium in a Lyapunov function. However, the )
right-hand side of the GENERIC cannot be the same as irTh'S is the formulation _of the GENERIC thz_it extends_ the
the relaxation equatiof2) because it has to contain also a Ginzburg-Landau equatiof?). In the rest of this subsection
convective termfor example, the Euler part of the Navier- We shall give a complete and.more precise formulathn of the
Stokes-Fourier equatiopsvioreover, if the GENERIC is lin-  Structure 1-4 and some addltlo_nal Qegenerac_y requirements.
earized about,, (the equilibrium state approachedtas =) We shall also dlsc_:uss its physical interpretation as well as
then the relaxation and the convection parts are expected Ryoperties of solutions of the GENERI@).
obey the Onsager-Casimir symmefiy,6]. In the general
nonlinear case, the relaxation and the convection parts will 1. Bundle structure
be shown to be related also through the requirement of cer- Gijyen the state variables, we want to know how the
tain complementary degeneracies. equilibrium thermodynamic state variables,§) are ex-
pressed in terms of. This means that we want to introduce
B. Formulation of the GENERIC a mapping

Let level 1 and the level of equilibrium thermodynamics .
(level 2) be found to be well established. This means that the M= Nox= (n(x), 6(x). ®
experimental observations made are found to be reproducible
on level 1 and that predictions based on the dynamical theoryhis mapping can be interpreted as an introduction of coor-
formulated on level 1 agree with the results of the observadinates intoM. Everyxe M can now be represented as a
tions. Moreover, the macroscopic systems under consideRair x=(y,z), wherey e N'andze I1~*(y) [[I"*(y)C M is
ation are free from external influences so that they reach, d§€ inverse image oy € V]. In accordance with the estab-
time goes on infinity, states, called equilibrium thermody-lished terminology of differential geometry, we call"*(y)
namics states, at which they can be well described by star@ fiber overy. Again, by using the established terminology,
dard equilibrium thermodynamics. We now present a generigve also regard\ as a bundleM = (M, N,II), where M is
time-evolution equation on level 1 whose solutions are guarthe total space)N is the base space, ardd is the bundle
anteed to agree with the observation that the behavior afrojection. We assume th&t is surjective(i.e., to everyy
appropriately prepared systems can be well described by N there is attached a fibent will also be useful to regard
equilibrium thermodynamicsthe preparation process con- the introduction of the mappinH [see Eq(5)] as an intro-
sists of leaving the systems free of external influences for duction of two potentials(real-valued functionsin M,
sufficiently long time. namely,n: M—R,x—n(x) ande: M— R,x—e(x).

We begin by establishing the terminology. With the sym- The considerations leading to the specificationlbfare
bol x we denote state variables used on level 1; the set of albased on the physical interpretation>ot M and of (,e)
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e N. For example, ifx is the one-particle distribution func- SA 6B
tion f(r,v) (r andv stand for the position and velocity vec- {A,B}=<§,L§> (10
tors), then
1( 4 . is a Poisson bracket;) denotes the scalar product aA¢B
n= vf d ff d v f(r,v) (6)  are sufficiently regular functiond4—R. We say that Eq.
(10) defines a Poisson bracket if the antisymmetry property
and {A,B}=—{B,A} and the Jacobi identity

L {A,{B,C}}+{B,{C,A}}+{C,{A,B}}=0 hold. Note that is
B allowed to be a function ok. It is easy to see that if is
e= VJ’ dng dwh(rvi(rv), @) independent ok (as it is, for example, in the case of classi-
cal mechanics then the skew symmetry af automatically
whereV is the volume of the region in which the system implies both the antisymmetry of the bracket and the Jacobi
under consideration is confined ahgr,v) is the energy of identity. If L depends orx, then the Jacobi identity repre-
one particle. sents a severe additional restriction.
. (b) Consider the following real-valued functionals on the
2. Potentials (E,S) state spaceM: E(x), S(x), and the components f(x). All
The energyE and the entropy are two real-valued func- these functionals excef(x) are distinguished functions of
tions ofx. The individual features of the systems under con-the Poisson bracke10). We say that a functio@: M—R is
sideration are expressed in these potentials. Roughly spea&-distinguished function of the bracKet if {A,C}=0 holds
ing, the internal interactions and all motions are expressed ifor all A. From Eq.(10) we see that ifC is a distinguished
E and the internal organization is B The methods devel- function, its gradient lies in the null spacelof The operator
oped and the experience gained in equilibrium statistical mek is thus degenerate. We note that the operhtarising in
chanics are usually found to be useful in the specification otlassical mechanidsee Eq.(9)] is nondegenerate. In mac-
E andS. We shall see a few examples later in this paper andoscopic dynamics, the degeneracy is essential to satisfy the
many more in paper Il. entropy inequality(see the discussion of the properties of
We note thate(x) introduced in the mappin@l equals Solutions at the end of this subsectiom other words, the
E(x)/V. It is therefore superfluous to introdugx) as a appearance of dissipation and the appearance of degeneracy
separate potential. However, since we shall often considetre closely related.

theories on one level only without specifyidd and since The operatorg satisfying propertiega) and(b) above are
one might also be interested in bundle projections that do notalled Poisson operators Since these operators express
involve e(x), in general we need the potent&(x). mathematically the kinematics, we also use the tBoisson
kinematics Equation (4) with M=0 is a Poisson time-
3. Poisson (nondissipative or reversible) kinematics evolution equatiorit is called a Hamiltonian time-evolution

equation ifL is nondegenerateWe call this time evolution a

We recall that in the context of classical mechanicdNof S . - .
nondissipative or reversible time evolution.

particles the set of state variables jis=(r,p), where
r=(ry, ....rN), p=(p1, --..pn), @and ;,p;) are the posi-
tion and momentum vectors of thi¢h particle. The time
evolution ofx is governed by Hamilton's equations of mo-  The operatoM in the GENERIC(4) is closely related to

4. Ginzburg-Landau (dissipative or irreversible) kinematics

tion the operator appearing in the Ginzburg-Landau equdfipn
We shall require thaM satisfies the following properties.
dir L 9Eldr ® (@) The brackefcalled a Ginzburg-Landadissipative
dtlp JElap)’ bracket
where SA 6B
0 1 [A,B]=<§1M §> (12)
= o) ©

is symmetric, that ig,A,B]=[B,A] for all A,B, and satisfies
The operatolL (the cosymplectic matrixrepresents the ki- the positivity condition[A,A]=0 for all A. By A,B we
nematics of {,p). It expresses mathematically the fact tkat again denote sufficiently regular functiong—R. The op-
is composed of two parts: One)(denotes the position co- eratorM depends in general on
ordinates and the othep) conjugates of the velocities asso-  (b) Consider again the real-valued functiongl), S(x),
ciated with the position coordinates. and the components dii(x). All these functionals except
An analysis of many different choices of the state vari-S(x) are distinguished functions of the bracket). (We say
ablesx (see paper Il for several choices, for example, thethat a functionC: M—R is a distinguished function of the
classical hydrodynamic fields and the fields serving as stateracket[,] if the equationfA,C]=0 holds for allA.) The
variables in the configuration space kinetic theagvealed operatorM is thus degenerate since the gradients of the dis-
that all the operatork expressing the kinematics a&fe M tinguished functions of the dissipative bracket lie in the null
share the following properties. space ofM. In macroscopic dynamics, the degeneracyof
(a) The bracket is essential to satisfy the conservation of energy.
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The reason why we call the kinematics expresseldlia  except certain regularity requirements that guarantee that all
dissipative or irreversible kinematics will become clear laterfurther mathematical operations are well defined.
when we discuss properties of solutions of the GENERIC
(4). If L=0 in Eq. (4), then this equation becomes the
Ginzburg-Landau equatiof®) (we shall see the relationship

between the potentialb andS later in this section We note ¢ o rse, on the specific choice made in the bundle struc-
that the contributions involving the operatdr@ndM in EQ.  re potentials, and kinematics. There are, however, some
(4) are related to one another byutual degeneracy require- ,gneries of solutions of the GENERI@) or (13) that are
ments The potentialE that generates the nondissipative ghareq by all particular realizations. These properties depend
(Poisson time evolution is a distinguished function of the o)y on the general requirements about the bundle structure,
dissipative(Ginzburg-Landajibracket and, vice versa, the potentials, and kinematics that were listed above. We regard
potential S that generates the dissipative time evolution is &pege properties as a mathematical expression of the compat-

5. Properties of solutions of the GENERIC
Details of solutions of the GENERI@) or (13) depend,

distinguished function of the nondissipative bracket. More'ibility of the time evolution with equilibrium thermodynam-

over, the components &1 (x) are distinguished functions of
both bracketq,} and[,].

In the analysis of solutions of E(4), we shall see that the
essential property of the brackdt] is the positivity
[A,A]=0 for all A. The symmetn{A,B]=[B,A] and, in
fact, also the linearity of A,B] regarded as a function of
6B/ &x could be relaxed. From previous wo(kee[7] and
also[2,8]), a need for a dissipative time evolution that is
more general than the Ginzburg-Landau time evoluti@n
might be expected if one wants to include the Guldberg
Waage dynamics arising in chemical kinetics into our con
sideration 9] (the so-called mass action lawVe shall see in

paper Il that this dynamics can actually be cast in the form o

Eqg. (2); however, a generalization of EqR) seems to be

interesting and possibly unavoidable in some cases. For ex-
ample, later in this section, we shall illustrate a more general

version of the GENERIC with the Boltzmann kinetic equa-
tion [10]. This generalizatior(see[7] and also[2]) corre-
sponds to the following modification of the dissipative
bracket. LetW¥, called a dissipative potential, be a real-
valued function of gradients of functions1—R. (In the

ics. We shall now present these properties.

Property 1.The time evolution takes place only in the
fibersII (n,e). In other words, §,€) e A are constants of
motion, i.e.,

dIT(x)
dt

(14)

This property arises as an immediate consequence of the de-

generacy of the kinematics. From the physical point of view,

Eq. (14) expresses the conservation laws for the state vari-

]ables of equilibrium thermodynamics.

Property 2.

dE(x)
-~ O (19
dS(x)

T =0. (16)

context of particular physical applications it is in generalThese properties arise again as a direct consequence of the

necessary that the argumentfis dimensionless, and this
may cause some problemdVe require that¥(0)=0, ¥
reaches its minimum at 0, anll is convex in the neighbor-
hood of 0. We then introduce the generalized bracket

oA ov

x " 8( 5B/6x)> ' (12

[A,B]=<

We note immediately thdtA,A]=0 by virtue of the proper-
ties of ¥ and that in the special case wh#his a quadratic
dissipative potential then Eq12) reduces to Eq(11). The
degeneracy requirements are formulated as folloigx)
andE(x) are distinguished functions of E(1L.2). We say that
C is a distinguished function df ] if [A,C]=[C,A]=0 for
all A. If Eq. (12) replaces Eq(11) then Eq.(4) takes the
form

dx L&E 13
at S ox T a(esien) (13
Equation(13) is a generalization of the GENERI@). We
recall that Eq.(4) corresponds to the particular choice
W (z)=(1/2){(z,Mz) of the dissipative potential.

We have now compiled all the properties of the
GENERIC building blocksE, S, L, and M. There are no

degeneracy of the kinematics and of the propeftle#\} =0
and[A,A]=0.

From the physical point of view, Eq15) expresses the
energy conservation and E@l6) the entropy inequality.
Note that ifM =0, that is, if Eq.(4) reduces to the Poisson
time-evolution equation, then E@16) becomesdS/dt=0.
This means that all the potentidlb(x), E(x), andS(x) are
conserved.

Property 3. Our next task is to identify the time-
independent solutions of the GENERIC and to study their
stability. Also, we want to derive the fundamental thermody-
namic relation implied by the GENERIC. We shall here dis-
cuss Eq(4) only. The extension of the results to E4.3) is
a straightforward exercise.

Properties 1 and 2 suggest that the time-independent so-
lutions of the GENERIC(4) approached as— are the
thermodynamic equilibrium states, denoted, that maxi-
mize the entropy under the constrairééx)=const and
n(x)=const. We now prove this statement.

We introduce the potential

O=P(x)=—S(x)+aE(x)+bN(x), (17)
wherea,b are constant coefficient®J(x) =Vn(x) [see Eq.
(5)], andV is the volume. The states,, that maximize the

further restrictions on the functional form of these quantitiesentropy under the above constraints are solutions to
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(n,e,s) or some subset of them withs/dn and ds/de are
called Legendre transformations. In order to replace) by
(u,T) we first introduce a function

(18)

anda,b play the role of Lagrangian multipliers. Note that

is in fact a two-parameter family of states,b are the two d(ne,u,T)=—s(n,e)+ Ee— ﬁn. 21)
parameters T T
The degeneracy of the kinematics allows us to rewrite Eq.
(4) as Then we look for solutions, denoted,g)y,, of
dx_1L5<I> 6P . aCD_O b 22
at atax M (19 =% e

This equation(or its corresponding form involving the dissi- If we now insert @,e)y, into Eqg. (21), then we obtain the
pative potential¥’) has been called if2,3,11] a nonlinear | egendre transforns (., T) of s(n,e), that is,
Onsager-Casimir equation. The reason for this terminology
will become clear in property 4 below.

We see now clearly that the stat®g, which are the

solutions to Eq(18), are time-independent solutions of EQ.  For later use we shall formulate the structure introduced
(199 and thus also time-independent solutions of thegpove in a more geometrical langudde,13. Let T* \ de-
GENERIC (4). Moreover, Eqs(14)—(16) imply note the cotangent bundle &f. Locally, we denote its coor-
dinates by f,e,n*,e*), where fi,e)e N and ([n*,e*)

e T(he/V [the cotangent spacg, 4\ is the space of all
covectors in the pointr(,e)]. Next we construct the space
L T* NXR; its coordinates aren(e,n*,e*,s), whereseR.

thus @ p""‘Y? the role of the Lyapu_nov fu_nct|on in the s_tudy This space has a natural contact structure defined by the one
of the stability ofx;,. If ® reaches its minimum a¢;, and is form dw=ds—n*dn—e*de. The Legendre transformations

convex in the neighborhood e, then we can conclude that are the transformations that preserve this contact structure.

the st_atesqh are approached ds-<. . The fundamental thermodynamic relation is expressed in the
This proof of the approach tey, remains, of course, for- 4y that includes both the pointa) and (b) of the structure
mal unless we precisely specify the meaning of convergencgs oqyilibrium thermodynamics, as specification of a Leg-

(i.e., we gxplicitly introduce a topological.structure M) _ endre submanifold off* A’X R, that is, a submanifold on
and we discuss also the problem of the existence of SO'““F"\ﬁhich dw=0. In local coordinates, the Legendre submani-
of Eq. (4). Ideally, 'the topological defraﬂs as well as t_helr fold is the image of the mapping
physical interpretation should be provided for each particular
realization of Eq.(4). In reality, this often appears to be
rather difficult and thus we have to be content with the for-
mal proof. For example, the details have not yet been fully
clarified even in the context of the classical Boltzmann ki-
netic theory.

From what we have said so far about the staigs they
are good candidates for the thermodynamic equilibrium
states(i.e., the states at which the behavior of the system is
found to be well described by equilibrium thermodynamics ) -
In the remainder of this section we explicitly extract the Wherep is the pressure and is Legendre transform o
structure of equilibrium thermodynamics from E@) and mtrod_uced in Eq(23). This relation follows from the homo-
we elaborate the thermodynamic meaningiofeaching its ~ 9eneity of degree one &= S(N,E,V), whereS,N, E are the
nondegenerate minimum &, (since only then can we prove total entropy, number of particles, and enekgpt per unit
that Xx— Xy, ast— ). volur_ne andV is thg volumg. The relatiofR5), that is, thg

We recall the structure i\ that expresses equilibrium elationp=p(xu,T), is the Gibbs-Duhem form of the relation
thermodynamics. s=s(n,e). _ _

(@ In addition to the state variables:) e N there is Now we return to the setting of level 1. By comparing
another state variablg called entropy per unit volume, that Eds.(17) and(18) with Egs.(21) and(22), we see that we
is a function of ,e) [i.e., s=s(n,e)]. This function is €an interpret the potentidh |n.Eq.(17) as a potential arising
called a fundamental thermodynamic relation. It is in thisin the Legendre transformation ¥ M < R. We denote the

relation that the individual features of the systems under conocal coordinates inT* MXR by (y,z,y*,z*,s), where

D((n,8)i, 0, T)="S(u,T). (23

do

Eso, (20

as(n,e) ds(n,e)
an e

(n,e)—|{ n,e,

,s(n,e) |. (29

(¢) In equilibrium thermodynamics, one has the identity

(29

E(lu’iT): - 21

sideration are expressed in equilibrium thermodynamics.
(b) The first derivatives of with respect tan ande (de-

noted byds/dn=—u/T and ds/de=1/T, whereT is the

temperature angk is the chemical potential per partigle

have the same status and importance as the state vanmgbles
e, and s themselves. The transformations that replace

x=(y,2)eM, yeN [ie, y=(ne)], zell Yy), y*
eTyN, z* e T¥I1 (y), andse R. If we make the identifi-
cation

b=

"
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then Eq.(17), having now the form alization of the concept of equilibrium entropy to that new
level. In the GENERIC approach, on the other hand, we start
on the more microscopic level of description and we formu-
late the structure of the time-evolution equation such that it
guarantees the observed approach to equilibrium thermody-
is the potential arising in the Legendre transformation ofnamics. One part of the proper structure is the poteB8(ig),

S(x) in T* MXR that corresponds tg* =(— u/T,1/T) and  which generally satisfies the inequalit¢6) and coincides

z* =0. Consequently, the potentié?7) evaluated ak,, [we  with the equilibrium entropy when evaluated for equilibrium
recall thatxy, is defined as solution to Eq18)], becomes statesxy,. From this alternative perspective, we therefore

1
P=D(x)=—SX)+ TEQ- N, (@7)

—pVIT [compare with Eq(25)], that is, interpretS(x) as a nonequilibrium entropy arising in the con-
frontation of a more microscopic level with the level of equi-
pVv librium thermodynamics.
P (xp) =~ T (28) Property 4.1f we now linearize Eq.(19) aboutxy,, we

obtain

This relation[having the formp=p(u,T) sincexy, is a func-

tion of u,T] is the fundamental thermodynamic relation im- %z(TL ~ M H® ¢ (29)

plied by the GENERIC. Moreover, the statgg[solutions of dt th S

Eq. (18)] are indeed thermodynamic equilibrium states, that

is, the states that are approached-ase and that represent Where we have used=1/T [see Eq.(26)], X=Xun*¢,

Nin M. Lin=L(Xn), Mp=M(Xy), and Hgﬁl’) is the Hessian ofb
Before turning our attention to the next property we noteeévaluated aky,, that is,

that if xe M has the meaning of a probability distribution )

(e.g., ifx is the N-particle distribution function, wherh! is H(®) — 6@ (30)

of the order of Avogadro’s numbeandS(x) is an informa- hexex|.

tional entropy[14], then Eqgs.(18) and (27) can be inter-

preted as a search for the least-biased probability distribuy follows directly from the properties df andM thatL, is

tion, that is, the probability distribution that maximizes the (formally) a skew symmetric linear operator ant, is (for-

informational entropyS(x) subject to the constraints im- mga|ly) a symmetric linear operatofWe have to use the ad-

posed by the available informati¢@4]. The available infor-  jective “formal” since we do not specify the domains of the

mation is, in the case of Eqel8) and (27), the information  operatorsLy, and My,.) In order to avoid problems with

associated with the knowledge of the enefgfx) and the  antisymmetric contributions t¥ (corresponding to dissipa-

number of particleN(x). The coefficients 7 and — /T tive dynamics without entropy productiprwe consider iso-

play the role of the Lagrange multipliers. Jayri@d] sug-  |ated systemsno external magnetic fieltisand we assume

gests to accept the maximization of the informational enthat a sufficiently detailed level of description has been cho-

tropy subjected to constraints imposed by available informagen(see problems caused by the transition from an inertial to

tion as a principle. We recall that in the case in which levely noninertial level of description ifil5]). In addition, the

1 is the fully microscopic level of descriptiofie., X is the  gegeneracy ot. and M implies that bothL, and My, are

N-particle distribution function, wherdl is of the order of  gegenerate linear operators: The vectoa§/@<)|xm and

Avogadro’s number then the Jaynes principle is just a rein- -
terpretation of the “Gibbs principle’{i.e., the Gibbs recipe (5N/5X)|Xth lie in the null space ofl.y, and the vectors

used in equilibrium statistical mechanics to pass from thd OE/ &), and (ON/&X)[y, lie in the null space oMy,.
fully microscopic level to the equilibrium thermodynamics These properties dfy, and My, together with Eq(29) con-
level). The advantage of the Jaynes formulation is that it carstitute our formulation of the Onsager-Casimir reciprocity
be applied to the passage from a general level 1 to a genertglations[5,6] (see alsq16]; in that paper, it was shown that
level 2 (provided, of course, we know how to express thethe Onsager-Casimir relations can only be assumed to be
informational entropy on level 1 and how to express level 2valid if there is a clear separation in time scales between the
as available information slow variablesx retained in the description and all the other

We see now that if we accept the GENERIC structure agariables that occur in a more microscopic description of the
a principle then the Jaynes principle arises as a consequen&ystem; in[16], any deviations from Onsager-Casimir sym-
The informational entropy arises as a generating function ofnetry are shown to be only of second order in the time-scale
dynamics on level 1, this quantity is maximized since weratio for a suitable choice of variabledf we compare this
look for the state approached as the time goes to infitlily ~ formulation, which appeared as a consequence of the
entropy also plays the role of the Lyapunov function corre-GENERIC structure, with the classical formulati6] then
sponding to this approaghand the available information is we recognize two important feature$) the degeneracy of
represented by the quantities that remain unchanged durifg, andMy, and(ii) the presence of the Hessian®frather
the time evolution on level 1. than the Hessian & in Eq. (29) (the latter feature is shared

In many previous papers attempts have been made to gehy other theories of nonequilibrium dynamic3he point is
eralize the concept of equilibrium entropy to nonequilibriumthat the equilibrium statg,, about which we are investigat-
situations. The typical perspective is that, starting from theng the linearized dynamics is not the state that maximizes
level of equilibrium thermodynamics, one looks for a morethe entropy but the state that maximizes the entropy sub-
microscopic level involving time evolution and for a gener- jected to constraints imposed by available informatioe.,

Xth
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the state minimizing the potentiab). Both of the above need to prepare the gasses suitably. The preparation process
features are closely related to the conservation laws of theonsists of leaving the gasses a sufficiently long time without
nonlinear time evolution. If the discussion is from the begin-external influences. It is this preparation process that will be
ning limited to the linearized time evolutiofb,6] then the  described by the GENERIC.
linear spaces on which the time evolution takes place are
automatically and without saying chosen in such a way that 1. State variables and bundle structure
the time evolution is nondegenerate.

Property 5.Finally, we just note how the operatdrsand
M transform under a one-to-one transformatiorx’. It is
easy to verify that

As the state variablg on level 1 we use the one-particle
distribution functionf(r,v), wherer andv denote the posi-
tion and velocity vectors of one particle. The state varigble
on level 2 is f1,e) as in Sec. |l B:

ax)  [ax) | x=f(rv), y=(ne). (33
L= 22| 228 (31)
Ax") LX) The bundle projection] is given by
T II:f(r,v)
_ d(Xx) M d(X) , (32)
d(x") d(x")

—

1 1 1

Z| g3 3 | 43 3, =

VJ d rJ d vf(r,v),vj d rJ d v2mv2f(r,v)>,
where L',M' are the operatord,M in the coordinates

x",d(x)la(x") is the transformation matrix and (34)
[3(x)/(x")]" is its transposéthat is,L’ and M’ are con-  wherem is the mass of one particle anlis the volume of
tracted from both sides witk’). As an example of the trans- the region in which the gas under consideration is confined.
formationx—x" we mention the transformation from hydro- This bundle projection follows directly from the physical
dynamics in the energy representation to hydrodynamics iinterpretation of the one-particle distribution function and the
the entropy representatigsee paper )l assumed absence of interactions among the particles.

C. Boltzmann equation 2. Potentials ES

The GENERIC structure introduced above can be used in 1N€ equation
two ways. First, we can accept it as a postulate and search for 1
its particular realizations in particular context§ his means E(X):f d3rf d3v=mv2f(r,v) (35)
that by using our physical insight into a particular system 2
and S|tuat-|0n, we suggest_ the state varlabdg$he bgndle again expresses that the only energy of the system is the
structure inM, t_he potentlaIaE_,S, and the kinematics. In kinetic energy of the particles. The expression
this way we arrive at dynamics that may appear to be a

reformulation of an already known and well-established dy-
namics or at a new dynamical model. This will be illustrated S(x)= —ksf dsff d*f(r,v)Inf(r,v) (36)
in paper Il.

We note that this first use of the GENERIC structure re-is the famous BoltzmanH function (kg is Boltzmann’s con-
minds us of the very familiar use of various algebraic andstant; f is not dimensionless so that, strictly speaking, In
geometric structures in microscopic physider example, cannot be formed; we should hence use a dimensionless
postulating a group and looking for its representatioide  quantity f/f,, wheref, is a suitable constant; since we are
second use of the GENERIC consists of accepting level hot interested in constant additive contributions to the en-
and level 2(equilibrium thermodynamigstheories as given, tropy and in normalization factors for distribution functions
and by analyzing solutions of level 1 dynamics and comparwe ignoref,). We can either suggest this potential on the
ing them with solutions of an appropriate realization of thepasis of known propertieBoltzmann’sH theorem of solu-
GENERIC, we prove that the GENERIC structure indeedtions of the Boltzmann equatiofthat is assumed to be
describes the approach of the chosen level 1 to GQUi|ibriuarown as a part of the experience included in |e\be(b|1we
thermodynamics. This analysis thus amounts teavation  can suggest it on the basis of relating entropy with a measure
of the GENERIC in a particular contextf a specific theory.  of information (see[14]). The first argument illustrates the
Also this second use of the GENERIC will be illustrated in second type of app“cation of the GENERIC, while the sec-
paper 1. ond argument illustrates the first type of application.

Since we want to regard this paper and paper Il as two From Eqs(27) and(28) we can easily find the fundamen-
self-contained papers, we here briefly describe an example @ thermodynamic relation that is implied by E¢34)—(36).

a particular realization of the GENERIC. This example is notThe solutionf, of Eq. (18) is the Maxwell-Boltzmann dis-
included in paper Il, but it has already been mentioned inyipytion

mv?
thermodynamics. Experience shows that both levels are well fth(f,V)“eX%kB—T exp{ - m) (37)
established for externally unforced dilute gasses. For the ap-

[3,17]. We choose level 1 to be the level of the Boltzmann
kinetic theory[18] and level 2 to be the level of equilibrium
plicability of equilibrium thermodynamics we, of course, The thermodynamic relatio(28) is thus
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5 . pV dimensionless. If we choosg as in Eq.(42), that is, if the
(D(Xth):_ka d rf d*ofy(rv)=—-—F7 (38  potential is the entropyB, thenX is indeed dimensionless.
However, in the general definition of the dissipation bracket

or, in a more explicit form, (12) we should be able to use in the argumentiofthe
gradient 6B/ 6f of any potentialB. We therefore have to
o 5 recognize that the gradients of the potentials appearing in Eq.
kB—Tzlnp— ElnkBT+const, (89 (12 all need to bgmadé dimensionless.

It is easy to verify that the above specifications comply
where the constant depends only on the particle magshis  with all the requirements included in the GENERIC structure
is the fundamental thermodynamic relation representing aand that this particular realization of GENERIC is identical
ideal gas. As we have expected, by analyzing the equilibriunto the Boltzmann kinetic equation. We can regard the above
solutions of the Boltzmann kinetic equation, we have recovillustration either as an alternative introduction of the Boltz-
ered the ideal gas fundamental thermodynamic relation. mann equatioitin the spirit of the first type of application of

the GENERIQ or as a derivation of the GENERIC structure
3. Reversible kinematics in this particular contextin the spirit of the second type of
We introduce the Poisson bracket application of the GENERILC The information about solu-
tions of the Boltzmann equation that allows us to arrive at

f(r,v)[ o (SA\ 9 (B the GENERIC formulation is the Boltzmartth theorem.
{A,B}=f d3rf d3v — ===
m |dv, of ar, of
I1l. ALTERNATIVE FORMULATIONS
d (68) d 6A) 40 OF THE GENERIC STRUCTURE
dv,\ of | ar,\ of ' In this section we shall continue to confront two different

where we use the summation convention. This Poisso#]evels of description. Our objective is to bring an additional

bracket arises in a straightforward manner when we recaﬁ)hySICaI insight into this discussion.

. . ; . : In Sec. Ill A we focus our attention on the structure of
two facts. First, we note that in classical mechanics the tim . :
. . thermodynamics. We recall that one of the essential features
evolution of (,v) can be regarded as a group of canonical

. of thermodynamics is the existence of conjugate state vari-
transformations and(r,v) as an element of the dual of the Y 1ug

. : ; : -~ ables and the importance that they enjoy. The question then
Lie algebra associated with this group. The second fact is &rises what the role of the conjugate variables in dynamics is.

o e g o oo v ]SS 118 we ac a whie nofe o e ghthand side of
(see, e.9.[19]) 9 he GENERIC. The setting that we obtain in this way can
» €.0. ' then be compared with the setting discussed previously by

4. Irreversible kinematics Onsager, Machlup, and others.

The dissipation potential is given by A. Contact dynamics

dissipative dynamicg¢e.g., classical mechanjcand thermo-
dynamics. The mathematical structures that provide a setting
X to deal with conjugate state variables are the symplectic and

+ ex;{ - 5) - 2}’ (41 contact structuregsee[20] for definitions of these structures

and for the analysis of relations among theifhis explains
where 1:(r11V1)' and 2:([‘2,\/2) are the coordinates and Why some mathematical techniques that are associated with
velocities of two colliding particles before a collision, those structures, for example, the Legendre transformation,
1'=(r},v}), 2’ =(r},vy) are the coordinates and velocities play an important role in both classical mechanics and ther-

after the collision(if the particles are assumed to be point Modynamics. The physics that is behind the emergence of
particles theW=0, except ifr;=r,=r,=r}), Wis the tran- the conjugate variables in classical mechanics is, however,

’{x) Conjugate state variables arise in both microscopic non-
exp =
2

\If(X)=Jd1f dzf d1’fd2’W(f;1,2,1’,2’)

sition probability for the collision, and differe_nt from the phys_ics that is b_ehind the co_njugate var_i-
ables in thermodynamics. In classical mechanics the conju-
gate state variableghe momentaarise due to the presence
oS oS S 8S o . ;
kgX= + - — . (42) of the inertia in the time evolution. In other words, the con-
of(1) ~ 6f(2)  sf(1)  sf(2') jugate state variable arises in classical mechanics since the

equation governing the time evolution of the position coor-
The transition probabilityV/, which is closely related to the dinates is a second-ordén time) differential equation. On
differential cross section for particle collisions, has the fol-the other hand, in thermodynamitand we may expect this
lowing properties: W=0 except if )%+ (v,)°=(v;)®>  also in dissipative dynamitshe main role of the conjugate
+(v5)? andv; +Vv,=v; +V5, in which caséV>0; W is also  state variable is to identify equilibrium states. We recall that,
symmetric with respect to the interchanges (3:4R,1) and for example, the mechanical equilibrium is found by equat-
(1',2)—(2',1"). We here again note the difficulty that ing pressuresgpressure is the state variable that is conjugate
arises due to the existence of physical dimensions of thé& the volume, the thermal equilibrium is found by equating
potentials. The argumeit of ¥ in Eq.(41) clearly has to be the temperaturegtemperature is the state variable that is
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conjugate to the entropyetc. We shall now follow the con-
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manifolds of this time evolution and the time evolution

jugate state variables in the context of dynamics generatestricted to these submanifolds is the time evolution gov-

by the GENERIC. We again limit ourselves to the confron-
tation of level 1 with the level of equilibrium thermodynam-
ics.

erned by the GENERIC.
(i) As the time goes to infinity, the time evolution on
£ brings each point of this Legendre submanifold to a

We have already formulated the structure of thermody<ixed point that lies on the smaller Legendre submanifold

namics in terms of the contact structure in Sec. Il B. We

recall that in\ the structure of equilibrium thermodynamics
is represented by a Legendre submanifold i\ X RR. The
local coordinates inT*A/XR are @,y*,w), whereye N
lie,y=(ne)] y*eTyN [ie, y*=(—u/T,1M)], andw

eR. The Legendre submanifold that represents thermody-

namics, denoted by the symbdl™, is the image of the
mapping(24) wheres, called entropy, is a functiol— R.
We also introduce a Legendre submanifoldlihM X R; we
shall denote it by the symboL™, as the image of the

mapping
oo S50

where S(x) is the potential arising in the GENERIC ap-
proach. The local coordinates ifi* MXR are (,x*,v),
wherexe M, x* e T M, andv € R.

In order to study Legendre transformations &f*! we
turn our attention to the potentid} introduced in Eq(27).
With the help of this potential we introduce two additional
Legendre submanifolds. The first, denoté&t"), is the im-
age of the mapping

We note that Eq(44) in fact represents a family of Legendre
submanifolds inT* M X R; the family is parametrized by* .
The second Legendre submanifold constructed with the hel
of the potential® is the submanifold denoted?Y, in

T* NXR. This submanifold is defined as the image of the
mapping

OS(X)

X, T'S(X) (43)

5D (x)

XM(X,T,CD(X) (44

y* = (N(X) , E(Xin) . ¥*, @ (Xep)), (49)

wherexy, is a solution of6®/6x=0. The submanifolcﬁﬂ(){)
[see Eq(45)] is indeed a Legendre submanifold since it is a

£ imbedded inT* VxR [see Eq.(45)].
We shall prove that all three requirements are verified for
the following time evolutiorf21]:

dx_ oK 46

a_ 5)(*, ( @

dx* B oK . oK 46h

T K (46b)

dv_K . oK 46

a_ - X 15)(* ] ( C)
1 1/ 6S(x) 8S(X)
K(x,x*):§<x*,M(x)x*>—§< S o >

SE(X)
X

>. (47)
where( , ) denotes the scalar product. The proof(igfcon-
sists of the observation that E@6) is a canonical form of
dynamics preserving the contact structdsee, e.g.[20]).
The potentiaK is called contact Hamiltonian. Propefiy) is
proven by direct verification after expressiBgandSin K in
terms of®. We note also that om:(yﬁ/‘) the contact Hamil-
tonianK equals zero. Propertyii ) is a direct consequence of
properties (i), (ii), and property 3 of solutions to the
BENERIC.

The contact Hamiltonia@7), for which all the Legendre
submanifoldsﬁyf) are invariant submanifolds of the time
evolution, is independent gf* . Furthermore, sincK is also
independent ob, Egs. (468 and (46b) are of the Hamil-
tonian form.

We will now make a few remarks about the physical con-
tent and possible applications of Eg46). We first note that
Eq. (46) is an equivalent reformulation of the GENERIC. Its

—<x*,L(x)

main contribution is that it is a reformulation that throws
additional light on the interrelationship between dissipative
dynamics and thermodynamics. The essence of the reformu-
lation is that the state spacet, on which the time evolution
takes place in the original formulation of the GENERIC, is

Legendre transform of the Legendre submanif6ld? [see
Eq. (43)] corresponding ta* =0, wherez* e TX 1 (y).
We can indeed verify directly tha (Xx,) = 6P (Xq)/ S(1/T)
andN(Xy) = 6P (X)) 6(— w/T).

Now we turn our attention to the time evolution in ) . . .
T* MxR. We look for the time evolution that satisfies the rePlaced byﬁyf). This space is not bigger thakt (i, for
following requirements. example, the dimension oM is finite then M and £

(i) The time evolution inT* M X R preserves the canoni- have the same dimensiprbut it has a richer structure than
cal contact structurégiven by the one fornx*dx—dv) of M. The new structure ilf(yi"’) that is missing inM is the
T* MXR. This means that the time evolutionTf MXRis  structure of a Legendre submanifolth the mathematical
a one-parameteithe parameter is the timdamily of Leg- interpretation and the structure of thermodynami@is the
endre transformations. physical interpretation This structure is then preserved dur-

(i) The time evolution inT* M X R extends the time evo- ing the time evolution so that the time evolution is a continu-
lution governed by the GENERIC in the sense that the Legous sequence of Legendre transformations. Finally-as,
endre submanifoldsﬁi&” [see Eq.(44)] are invariant sub- all states settle on a Legendre submanifold that expresses
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mathematically the thermodynamics on level 2 that is im- SA . 6B (o /SA\] [ o/5B
plied by the GENERIC time evolution. . _ . {AB}= E’LE =J dxf &(ﬁ) L a?(ﬁ) ;
Another advantage of the reformulatiqd6) is that it ; : (50)
gives us the possibility to formulate the GENERIC time evo-
M J (6B
ox\ of ||’

lution for discrete times. We recall, for example, that the
(51

: . S S ; SA . 6B [ 9 [6A)]
discrete time Hamiltonian evolution is formulated as an it- [A,B]=<—,M—> :f dxf _(_)
eration of a mapping that preserves the symplectic structure. of of [ 9x\ of /|
Analogically, we can formulate discrete time GENERIC

evolution as an iteration of a Legendre transformation, a

mapping preserving the contact strucjute numerical so- = :j

lutions the time has to be discretized. It has been demon- EM dxTO)E(), 62
strated in the context of Hamiltonian systefi®2] that the

time discretization that does not destroy the invariance of the .

symplectic structure has many advantages. We may expect S(f)= f dxf(x)S(x). (53
that a similar situation will occur in the context of the

GENERIC time evolution. By direct inspection we see that E¢49)—(53) are particular

realizations of the GENERIC in which(x) plays the role of

the state variable. We also note that, in additionS({d),

) there are many other distinguished functionals of} [for
In the Introduction we suggested that we should regar%xamme, ifL is independent ok, then [dxfInf is a distin-

the passage from microscopic to macroscopic descriptions agished functional of the bracket defined in E§0)] and

a pattern recognition in the set of trajectories corresponding,at the potential§52) and (53) are only linear functions of

to the microscopic theory. Intuitively, we may expect that aihe state variablé. The Liouville equation(48) or (49) has

good strategy in pattern recognition is to look at the trajecyroven to be an excellent starting point to look at macro-
tone; in dlﬁerenttfettlngs. Features that a}re clilff_lcultt;o rec;scopic theories but on its own is not very revealing. For
ognize in one setting may appear more clearly in other set- . . o~ 2
tings. In statistical mechanics, the standard first step in thgxa;‘pp:jle, duelt(?['thetllnt(re]anty of ;[he ?&5'};5_]%) andS(f),
passage to macroscopic descriptions is to present the partic\fl\é? ind o solu IOTd Ob eheq_ualllon X _f I.'f owe\(/j%r, h
trajectories as an evolution of a distribution function. In IS e_quatlon would be physically meanl.ng ul it we add the
other words, the equations governing the time evolution ofunctional —kgfdxfInf to S(f). In fact, if S(x)=0, then
particles are replaced by the Liouville equation. Anotherd®/8f=0 would be solved by the Boltzmann distribution
very successful pattern recognition strategy is “to smeafunction. _

off” and then to look for the pattern. In statistical mechanics W& now proceed to the Fokker-Planck reformulation. We
this strategy is usually achieved by adding noise to the govWant to introduce a noise term into the GENERHJ so that
erning equations. Under some conditions these equatiori§€ corresponding Fokker-Planck equation will be the par-
then also lead to an equation governing the distribution functicular realization of the GENERIG49) with the brackets
tion; however, the resulting equation is not the Liouville (50) and(51), the energy(52), and the entropy

equation but the Fokker-Planck equation. We shall now ap-

ply both of these pattern recognition strategies to the &f)— _

GENERIC. We are particularly interested to observe as to (M f AxFOALSO0 = kelnf(0]. (54
whether the formulations of the GENERIC in other contexts

are again particular, but different, realizations of theln other words, the time evolution of the distribution func-
GENERIC. tion is assumed to be governed by the Fokker-Planck equa-

The Liouville equation corresponding to the GENERIC is tion

B. Liouville and Fokker-Planck formulations

afxt) 9 JE S af(xt) 4 JE 43S
ot __07_X f(X,t)(Lé’—X'FM&) ’ (48) at :_ﬁ_X f(X,t)(L&—X'FMa—X)
. . . . . . (9 (9
wheref(x,t) is the distribution functiorifor clarity, we here kg M f(X,D) . (55)

reserve the symba? for derivatives with respect to the dis-
tribution functionf and use the symbal for derivatives with
respect to the state variables which may themselves be
functiong. We directly verify that Eq(48) can also be writ-
ten as

We note, however, that in this case the degeneracy require-

ment forL is not generally satisfied. From the physical point
of view this is because the added noise plays the role of an
external influence. We expect to obtain equations that pos-
sess the complete GENERIC structure if the noise becomes a
of .S6E . 6S state variable and we have another equation governing the
Lo tM5r (49 time evolution of the noise.
The Fokker-Planck equatioi®5) is equivalent to the sto-
chastic differential equation obtained by adding ndiaad
where the divergence oM) to the GENERIC(4) [23],
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JE JS IM Finally, we briefly mention related work of Graham and
dX=LO7—dt+ M—dt+kg——dt+BdW,, (56) Tél (see review{28]), who introduce a general dissipative
X IX X . . ! ; .
time-evolution equation. Their equation has the same form as
whereB is a solution of the equation our GENERIC except that it has less structure. The operator
L is not required to be Poisson and, moreovegndM are
not required to possess the complementary degeneracy.
BB'=2kgM (57)
IV. CONCLUDING REMARKS
andW, is a multicomponent Wiener process, that is, a Gauss-
ian process with first and second moments given by Universal features of macroscopic dynamics have been
recognized and used by Onsagf, Casimir[6], Ginzburg
and Landau4], and other$27,28. The GENERIC approach

(W,)=0, (WtWtT/>= min(t,t’)1 (58  that we introduce in this paper sums up results of these stud-
ies and contributes to them by introducing an additional
or, more formally, structure, by developing different applications, and by throw-

ing a light on the relation between dissipative dynamics and
thermodynamics.

dW, dW, thT, We have emphasized that, from the physical point of
W =V, W :5(t—t')l. (59)

view, the GENERIC structure expresses the experimentally
observed approach of one well-established level of descrip-
The expression(57) for B may be regarded as the 2?13 g)lsinog}leg;?;’gll.sorf]:fsﬁ”p;'g.'g tr;rt ng:re r?:;rlotzcgp'(?_
fluctuation-dissipation theorewf the second kindsee Secs. |, - w ! + In particutar, PP : qui

librium. Time-evolution equations that do not describe this

1.6 and 2.9 of 24]). In obtaining this theorem, we did not f h but | | will not thi
make any assumptions about being close to equilibrium opype of approach may, but in general will not possess this
structure. For example, the equations governing the time

even local equilibrium and, interestingly, no temperatureevolution of externally forced systems that generate complex
variable is required for formulating this fluctuation- y y 9 P

dissipation theorem patterns(e.g., those discussed [29]) will not in general

As an illustration of the stochastic dynami&s) and(57) possess the GENERIC structure. What will possess this

we refer the reader to the example of fluctuating hydrody_structure will be equations expressing the approach of the

namics. With the specifications bf M, E, S, andB given in time evolu_tion of these dri_ven systems formulated on more

paper 1, Eq.(56) becomes the governing equation of the microscopic levels to the time evolution formul_ateq[ﬁg].

fluctuating hydrodynamics appearing, for example|28]. We hope to systematically discuss th(_ase appllcat|ons_ of Fhe
There are properties of solutions of E§5) that can be GENERIC in a future paper. The main result emerging in

extracted and that are of interest in the pattern recognitior11hese applications will be the thermody.na.mlcs of driven sys-
tems formulated on the levels of description used2.

gertcs);%ersjn:de ﬁ;@%ﬁ%zg?gf; ;?E&CZR?g)?r&ZSWESIm”S%_o” The structure that makes the GENERIC approach very
lutions to Eq.(55) as functional integrals involving the La- ppw_erfu_l n appllcat|on_s is the Po_lsson structure of the non-

i . dissipative part of the time evolution and the complementary
grangianAq(X,x), degeneracy of the dissipative and nondissipative parts of the

structure. The principal domain of applications that we have

SE 5S| M- 1 SE 5S explored is hydrodynamics and kinetic theory of complex

A0=< ) _( X—L——M _) > fluids while the applications developed previoughpplica-

4k oX OX tions of a less complete universal strucjuveere, for the

(60) most part, limited to finite-dimensional dynamical systems.

(strictly speakingM is degenerate: se@7,28 for a more We reg_ard_the applicatio_ns as the problem of find@ng particu-

careful discussion In the saddle-point approximation, one I‘_'” reallzatlo_ns of the umver_sal StT“CF‘”_e expressing the par-

looks for solutions of the Hamiltonian system correspondingIICUIar physics under por)5|derat|c1(!$|mllarly to, for ex

to the Lagrangiar60). We hence realize that the dynamics ample, the problem of finding a particular representation of a

arising in the Onsager-Machlup analysis takes place in thgroup.

extended state spad& M. If the newly adopted state vari-

able is set equal to zero, then the Hamilton equations reduce

to the GENERIC. We note that the physics behind the M.G. acknowledges financial assistance provided by the

Onsager-Machlup extension of dynamics frow to T* M Natural Sciences and Engineering Research Council of

is very different from the physics behind the extension fromCanada and by the Province of Quee through the Pro-

M to T* MXR discussed in Sec. Il A. gramme Coopation Internationale.
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